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Based on experimental evidence, explicit vorticity-distributed solutions to the Euler equations in two dimen-
sions are constructed describing the tripole vortex. The vortex form and the solution outside the region of
nonzero vorticity are derived analytically, while the interior is solved numerically. The continuous-vorticity
solution reproduces the main features of the tripoles observed in laboratory experiments and numerical
simulations—their shape, flow pattern, and the form of the nonlinear vorticity vs streamfunction relation. The
approach followed in the construction of a tripole proves to be beneficial in the search for higher-order
multipoles, an example being a smooth quadrupole solution.
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I. INTRODUCTION

Localized distributed vortices are common in ordinary
fluids and plasmas. In an ideal fluid, any two-dimensional
(2D) circularly symmetric monopole represents an exact sta-
tionary solution. The first nontrivial vortical solution—the
translating circular dipole—was suggested independently
about a century ago by Lamb[1] and Chaplygin[2] (see Ref.
[3], where Chaplygin’s solution is reproduced and analyzed).
Since that time, most of the research in the dynamics of
localized distributed vortices has been associated with mono-
poles and dipoles or their combinations. In the last 15 years,
the tripole and even more complex rotating vortices marked
by zero total circulation have been studied mainly by experi-
mental and numerical methods[4–14], analytical approaches
being mostly applied to singular and piecewise-constant vor-
ticity situations(see Refs.[15–19] and references therein).

The emergence of tripoles was first independently ob-
served in numerical simulations[4] and laboratory experi-
ments withcompact isolatedmonopoles produced using the
stirring technique in a homogeneous rotating fluid(f plane),
where weak motions can be regarded as nondivergent and
quasi-2D[6,8]. Here,compactmeans that the vorticity dif-
fers from zero only within a finite region, while the term
isolatedis used in reference to vortices with zero circulation
(net vorticity). In the vorticity field, the isolation of a mono-
pole is manifested by the presence of ashield—a ring of
vorticity of common sign surrounding the central domain
where the vorticity is oppositely signed. The stability or oth-
erwise of a circular isolated monopole depends on its veloc-
ity profile. In monopoles possessing one shield, the critical
factor is the steepness of the outer front of this profile, i.e.,
(in compact monopoles) the relative width of the shield. At
moderate steepness, the monopole is linearly unstable, azi-
muthal mode 2 having the highest growth rate. The develop-
ment and subsequent nonlinear saturation of this mode result
in the formation of an isolated tripole[4,5,11,20,21], which
is compact if the original monopole is compact.

Shortly after the first laboratory observations, a meso-
scale tripole eddy was observed in the Bay of Biscay[22]
with the use of satellite imaging. In the context of 2D flows,
magnetized ion plasma and electron gas are equivalent to
ordinary rotating fluids since the Lorentz force has the same
effect as the Coriolis force. Therefore, it is little wonder that
tripole vortices were soon observed with electron columns
confined in Malmberg-Penning traps[12,13] and, recently, in
magnetized plasma with the high-density plasma experiment
(HYPER-I) device[14]. One can expect that optical tripoles
will also be found(optical monopoles and dipoles in a ho-
mogeneous bulk medium are discussed in Ref.[23]).

The experimental detection of tripoles attests to their suf-
ficient durability. This stimulates a search for explicit tripole
solutions(e.g., for the purpose of a thorough stability analy-
sis). In this paper, we construct semianalytical 2D solutions
that are able to reproduce the main features of the observed
tripoles.

II. EXPERIMENTAL EVIDENCE

A tripole emerged from a stirring-induced monopole in
one of our f-plane laboratory experiments is displayed in
Fig. 1(a), visualized by a fluorescent dye. It is a coherent
vortex structure with three aligned patches of distributed
vorticity—a core of positive vorticity and two weaker “sat-
ellites” of negative vorticity, the integral vorticity of the core
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FIG. 1. Experimental tripole:(a) dye image;(b) sketch of the

separatrix(rM, maximal radius;rm, minimal radius).
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being twice as strong(in absolute value) as that of each
satellite. The tripole rotates counterclockwise in a solid-
body-like manner exhibiting central symmetry; it is almost
symmetric about the longitudinal axis passing through the
poles of the vortex triple. The observed tripoles decay slowly
mainly through the entrainment and dissipation. The time
scale of this decay is much larger than the turnover time, so
that the tripole evolution can be reckoned as “adiabatic.”
Thus, to study the form and structure of the tripole, we can
consider the tripole in a co-rotating frame of reference as a
stationary 2D flow of an ideal fluid. Under these assump-
tions, each fluid parcel keeps its vorticity, and the paths of
parcels coincide with the streamlines. Note that the frontierG
of the nonzero-vorticity area is a part of one of these con-
tours.

In Fig. 1(a) two thin filaments linking the core with the
satellites are seen. In the co-rotating frame, they mark the
streamline that partially coincides with the core edge, where
the particles move counterclockwise, and partially with the
outer satellite edges(i.e., with G), where the movement is
clockwise. Thus there are two centrally symmetric stagnation
points at this streamline, where the velocity changes its di-
rection. It is straightforward to see that these are the saddle
points of the flow, and the streamline is a separatrix. It is
possible approximately to identify the separatrix and, hence,
the form of the vortex frontierG and the positions of the two
saddle points by assuming the symmetry of the dye image
about the longitudinal axis and performing the corresponding
symmetry transformation[Fig. 1(b)]. Note that the central
symmetry and the symmetry about the longitudinal axis to-

gether imply the symmetry about the transverse axis. The
existence of the two symmetrical boundary corners will form
one of the conditions for the determination of the tripole’s
shape and structure. In all our experiments, whenever the
tripole was well formed, the border aspect ratiorM / rm [see
Fig. 1(b) for notations], was fairly close to 1.60(to within a
1.5% measurement error) regardless of the tripole size and
intensity. This suggests the virtual similarity of the tripoles
observed.

III. EQUATIONS AND BOUNDARY CONDITIONS

A. Definitions and notations

Consider now a compact isolated vortex bounded by a
contourG andsteadilyrotating at a constant angular velocity
v. In a fixed frame of reference, the Lagrangian vorticity
conservation is given by the equation

] z/] t + Jsc,zd = 0,

wherec andz=Dc are the streamfunction and vorticity, re-
spectively; J is the Jacobian;D, Laplacian. In this frame

supplied with polar coordinatesr andũ with the origin in the

center of rotation,c depends onr andu= ũ−vt only. Thus,
in the co-rotating frame with polar coordinatesr and u, the
vortex is stationary, and we have

JsC,zd = 0, C = c − 1
2vr2,

where C is the streamfunction in this frame. Stationarity
implies CuG=C=const, so thatG is a part of the separatrix
streamlineC=C whose self-intersection(stagnation) points
are the corner vertices.

It is appropriate now to change to nondimensional vari-
ables. As will be seen below, for the solution to exist, the
constantsC and v must be opposite in sign. Assuming(for
definiteness) that the tripole rotates counterclockwise, i.e.,
v.0 andC,0, we choose the positive constants −C andv
as the scales for the streamfunctionssc ,Cd and vorticity,
respectively, ands−C/vd1/2 as the length scale. In what fol-
lows, x,y,r—the Cartesian coordinates and polar radius in
the co-rotating frame of reference, andc, C, z are nondi-
mensional, while the interior(insideG) and exterior(outside
G) streamfunctions and vorticity are marked with the super-
scripts(In) and (Ex), respectively.

B. Exterior problem

The requirements of compactness and isolation of the vor-
tex provide the following relationships:

DcsExd = 0; csExd → 0 as r → `. s1d

The condition at the boundaryG is:

CsExduG = − 1. s2d

Given the contourG, relationships(1) and (2) determine a
unique exterior solution. Conversely, by prescribing a spe-
cific form of the exterior solution, the family of possible
borders is fixed. We choose the second alternative and con-
sider solutions to(1) that are symmetric about thex and y

FIG. 2. Smooth two-mode tripole solution:(a) flow pattern(iso-
contours ofC andz; bold line, separatrix); (b) streamfunction cross
sections atx=0 (solid line) and y=0 (dashed line); (c) vorticity
cross sections atx=0 (solid line) andy=0 (dashed line); (d) scatter
plot of z vs C (straight line, exterior; curved line, interior).
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axes(in the co-rotating frame) and incorporate a finite num-
ber M of azimuthal modes

CsExd =
1

2Fo
m=1

M

a2m

1

r2mcoss2mud − r2G , s3d

wherea2m are constants. Based on the above experimental
observations, relationships(2) and(3) must be supplemented
with stagnation-point(corner) conditions. Ther coordinate
of a boundary point is a function ofu; it will be denoted by
rG=rGsud. Without loss of generality we can fix the orienta-
tion of the tripole so that the pointsu=0, r =rGs0d and
u=p, r =rGspd are the boundary corner vertices, i.e.,
rGs0d=rGspd=rm [see Fig. 1(b)]. Due to the symmetry of the
tripole, it is sufficient to impose the corner conditions on
only one of these points, say, onu=0, r =rm:

CsExduu=0,r=rm
= − 1, U ]

] r
CsExdU

u=0,r=rm

= 0. s4d

Relationships(2)–(4) serve to determine the tripole frontier.

C. Interior problem

The interior problem involves the third-order equation

JsCsInd,DCsIndd = 0 s5d

and the boundary conditions

CsInduG = − 1, ] CsInd/] nuG = ] CsExd/] nuG, s6d

wheren is the boundary normal. When dealing with the in-
terior, we assume the border and exterior solution to be com-
pletely known. This determines the interior solution, includ-
ing the relation between the vorticity and streamfunction that
exists due to Eq.(5) and is nonlinear in noncircular multipo-
lar vortices[24,25]. The interior is solved with the use of
Newton-Kantorovich iterative algorithm. The streamfunction
at iteration i +1 is represented asCi+1

sInd=Ci
sInd+d, and the

correctiond is found from the linearized version of Eq.(5),

Jsd,DCi
sIndd + JsCi

sInd,Ddd = − JsCi
sInd,DCi

sIndd,

and boundary conditions(6) written in terms ofd. To solve
the linear problem we apply a collocation method with a
polynomial representation of the correction,d

=o0øp+søNap,sx
2py2s, whereN is some preset integer(due to

the symmetry of the tripole about thex andy axes, only even
powers ofx andy are present in this polynomial); the initial
guessCi

sInd is also given in a polynomial form. This allows
us to calculate in polynomials all the differential operators
and reduce the problem to a system of linear equations in
ap,s (corresponding to a chosen set of interior and boundary
points K@N), which is solved numerically in the least-
squares sense(for technical details see Ref.[24]). As soon as
the interior solution is found, thezsInd vs CsInd relation is
computed.

Due to the dependence ofzsInd on CsInd, the streamlines
and iso-vorticity contours(i.e., the iso-contours ofCsInd and
zsInd) coincide. Thus the interior vorticity along the vortex
border, zsInduG, is constant but not necessarily zero. This
means that, in general, there is a vorticity jump across the
border. We will show, however, that a solution with no vor-
ticity jump does exist.

IV. TRIPOLE SOLUTIONS

Confining ourselves to the tripoles that contain not more
than two exterior modes, we putM =2. Relationships(2) and
(3) yield the equation

rG
6 − 2rG

4 − a2rG
2cos2u − a4cos4u = 0

which, with some restrictions on the parametersa2 and a4,
determines closed contoursrG−rGsud. (Note that the equation
rG

6 +2rG
4 −a2rG

2cos2u−a4cos4u=0 resulting from the condition
C/v.0 has no real roots for some values ofu, whatever the
parametersa2Þ0 and a4.) The stagnation-point conditions
(4) provide two constraints that allow us to express param-
etersa2 anda4 in terms ofrm and chooserm as the only free
parameter,

a2 = rm
2 s3rm

2 − 4d, a4 = rm
4 s1 − rm

2 d. s7d

Thus the two-mode tripole solutions constitute a one-
parameter family.

The simplest tripole, corresponding to the caseM =1, is
obtained by settingrm=1 in Eqs.(7). In this case,a2=−1,

a4=0, andrG=Î1+Î1−cos2u. The boundary aspect ratio in

the one-mode tripole,rM / rm=Î1+Î2<1.554, is rather close
to the observed value, but computations show that there is a
vorticity jump across the border:zsInduG<−1.25. In contrast,
the observed tripoles are essentially smooth in this respect
[8]. Moreover, one may surmise that continuity of vorticity is
critical for vortex stability[24,26].

Further computations with varyingrm disclose thatzsInduG
is a monotonic function orrm, changing sign atrm<0.97.
Thus, we conclude that there exists a unique smooth two-
mode tripole solution. We note that the weight of the 4th
harmonic in this solution is relatively smalls−a4/a2<0.10d
and inclusion of higher even harmonics in Eq.(3) barely
changes the result. In dimensional variables the two-mode
smooth tripoles differ only in size and angular velocity(i.e.,
in amplitude), their aspect ratio,rM / rm<1.61, being ex-
tremely close to the experimentally estimated value of 1.60.

FIG. 3. Smooth two-mode quadrupole solution:(a) flow pattern;
(b) scatter plot ofz vs C [details as in Figs. 2(a) and 2(d)].
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The smooth two-mode solution is shown in Fig. 2. Its
flow pattern[Figs. 2(a) and 2(b)] closely follows the experi-
mental pattern(Fig. 1(a); cf. also Fig. 13 in Ref.[8] and Fig.
7 in Ref. [4]); also the vorticity distribution[Figs. 2(a) and
2(c)] resembles that in the experiments and computer simu-
lations (cf. Fig. 6 in Ref. [8] and Fig. 8 in Ref.[4]). The
vorticity-streamfunction relationship[Fig. 2(d)] is in good
agreement with that in the experimental tripoles(cf. Fig. 12
in Ref. [8]): in the interior, it is convex downwards, being
basically linear in the central part of the core but clearly
nonlinear in the satellites.

V. DISCUSSION

In some aspects, the solutions presented above can be
regarded as an extension of the classical ideas of Lamb and
Chaplygin. Indeed, in the classical circular dipole solution
only one lowest azimuthal mode(sin u or cosu) is present.
Likewise, the simplest of our tripole solutions bears only one
lowest modescos 2ud in the exterior. The uniqueness of the
smooth two-mode tripole and the fact that the solution incor-
porates the minimal number of the lowest exterior modes
required to remove any vorticity jump also make it allied to
the Lamb-Chaplygin dipole. Furthermore, based on the same
logic, i.e., prescribing the form of the exterior solution and
demanding the existence of 3, 4, etc., stagnation points, and
using essentially the same numerical technique, higher-order

one- and two-mode multipoles—quadrupole, pentapole,
etc.—can be obtained. An example is the smooth quadrupole
solution bearing two lowest harmonics(cos 3u and cos 6u)
in the exterior(Fig. 3). Its close similarity to the “triangular”
vortex obtained in numerical simulations[10] becomes ob-
vious when we bring in correspondence the definitions of the
streamfunction and vorticity assumed here and in Ref.[10]
sC→−C ,z→−zd and compare our Fig. 3 with Figs. 9 and
10 in Ref.[10].

It is our opinion that the strategy followed in the construc-
tion of a tripole solution may find use in various fields of
nonlinear dynamics where the search for localized structures
is the issue.
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